
Eurographics Symposium on Point-Based Graphics (2005)
M. Pauly, M. Zwicker, (Editors)

Voronoi Rasterization of Sparse Point Sets

Jerry O. Talton Nathan A. Carr John C. Hart

University of Illinois at Urbana-Champaign

Abstract
Point-based representations are becoming increasingly common in computer graphics, especially for visualizing
data sets where the number of points is large relative to the number of pixels involved in their display. When
dealing with sparse point sets, however, many traditional rendering algorithms for point data perform poorly,
either by generating blurry or non-occluding surface representations or by requiring extensive pre-processing to
yield good results.
In this paper we present a novel method for point-based surface visualization that we call Voronoi rasterization.
Voronoi rasterization uses modern programmable graphics hardware to generate occluding surface representa-
tions from sparse, oriented point sets without preprocessing. In particular, Voronoi rasterization clips away over-
lapping flaps between neighboring splats and generates an approximation of the Voronoi diagram of the points
under the surface’s geodesic distance. To approximate smooth shading and texturing on top of this clipped surface,
our method uses existing techniques to construct a smoothly blended screen-space attribute field that implicitly
accounts for neighborhood relations between points.

1. Introduction

Since the point first drew consideration as a rendering primi-
tive several decades ago [LW85], it has proven to be a useful
and practical tool in a wide variety of visualization prob-
lems. Point-based techniques have been successfully applied
in volume rendering [ZPvBG01a], ray tracing [ABCO∗03],
and dense mesh visualization [RL01]. Point-based schemes
are especially suited for visualization problems where the
number of rendering primitives is much greater than the
number of pixels involved in their final display.

In contrast, sparse collections of points, where the de-
sired number of activated pixels is large relative to the num-
ber of elements in the point set, challenge these traditional
display methods. Techniques have been developed to inter-
polate a sparse collection of points into a smooth surface
[Lev03, MYC∗01], but methods for accurately rendering
such surfaces typically require the re-introduction of dense
point-sets and are far from real-time. Splatting approaches
suitable for sparse sample display exist, but the resulting im-
age can appear blurry or contain other visual artifacts.

Witkin and Heckbert [WH94] revolutionized the interac-
tive display of implicit surfaces by constraining a sparse col-
lection of mutually repelling particles to the surface. These
particles may then be easily rendered as oriented disks,

yielding a polka dot pattern that adds a texture perspective
cue to the perception of the implicit surface. The main draw-
back of this approach is that it sacrifices occlusion, though
back-facing particles can be culled. Occlusion can be re-
stored by increasing the disk radii until neighboring disks
overlap, but this leads to unsightly and distracting flaps with
traditional rendering schemes.

Inspired by this approach, and given the programmabil-
ity of the modern graphics processor, we have developed
a multi-pass algorithm that removes such flaps from these
overlapping oriented disks. What remains is an approxima-
tion of the Voronoi diagram of the points under the surface’s
geodesic distance. We call this method Voronoi rasteriza-
tion, since we are replacing the rasterization of the (ide-
ally Delaunay) triangular faces connecting surface samples
with an approximated Voronoi face surrounding each surface
sample. Furthermore, absolutely no inter-sample topology is
needed: neighbor-relations between points are detected im-
plicitly in image space by the existence of mutually overlap-
ping flaps.

One advantage of meshed rasterization is the barycen-
tric interpolation of vertex attributes (e.g. color data, nor-
mal vectors, texture coordinates) across faces. Point-based
methods lack explicit topological information and thus pose

c© The Eurographics Association 2005.



J. Talton, N. Carr, & J. Hart / Voronoi Rasterization

(a) (b) (c) (d)

Figure 1: An implicit surface displayed with floater particles does not occlude (a). Increasing the floater radii creates an
occluding surface with unsightly flaps (b). Voronoi rasterization trims these flaps yielding a faceted, occluding surface (c).
Attributes such as the surface normal can be smoothly blended between point samples (d).

a challenging problem in attribute interpolation. Our solu-
tion, similar to others’ [BSK04], is inspired by blending
via the sum of basis functions. First, we scale the size of
each disk so they not only meet their neighbors but extend
to cover the centers of neighboring disks. We then center a
quasi-Gaussian kernel over each Voronoi cell, and the sums
of these kernels, computed in an intermediate pass before the
disks are clipped to each other, blend the attributes stored at
each surface sample point. Unlike in meshes, this blending
is not a linear interpolation, but it suffices for the visual dis-
play of the Gouraud and Phong smooth shading methods, as
well as for texturing.

2. Related Work

The idea of splatting point samples by displaying overlap-
ping oriented ellipses was driven by the generation of object
representations from laser scanners, which typically produce
a dense collection of surface samples [RL01, ZPvBG01b].
Subsequent work focused heavily on the development
of robust tools for the editing [ZPKG02] and modeling
[PKKG03] of such representations.

Similar to many other point splatting hardware acceler-
ations [RPZ02, GP03, BK03, ZRB∗04], our three-pass al-
gorithm uses an initial visibility pass to determine occlu-
sion, a second to interpolate attributes, and a third to per-
form final display. The difference with our approach is the
result, which mutually clips the ellipses to each other to
yield surface Voronoi cells with smoothly blended attributes
and a near-continuous depth field. We display our point
samples using quadrilateral polygons [RPZ02] which are
trimmed to pixel-accurate ellipses using a fragment program
[GP03, BK03, ZRB∗04].

The idea of clipping sparse splats to reproduce sharp fea-
tures arose amidst a derivation of perspective correct splat-
ting [ZRB∗04]. This work displayed truncated disks by first
extracting sharp feature curves from the point data, and then
performing clipping in the fragment program that converted

the OpenGL point primitive into an ellipse, presumably by
simply evaluating the clipping plane equation on the frag-
ment location. In contrast, our Voronoi rasterization method
clips projected disks to each other. An explicit feature detec-
tion step is not necessary as discontinuities in the orientation
of the disks create feature curves as a result of this mutual
clipping.

Botsch et al. proposed an efficient technique that makes
use of programmable graphics hardware to blend normals
across neighboring splats by associating a linearly varying
normal field with each ellipse [BSK04]. Their technique,
however, requires an O(n2) preprocessing algorithm to gen-
erate these fields, and would not be suitable for highly dy-
namic point sets. In addition, overlapping flaps between
neighboring disks are alpha blended and not culled, making
flat shaded representations impossible.

3. Algorithm

Voronoi rasterization is fundamentally a two pass algo-
rithm that removes overlapping flaps from neighboring
disks. Smooth attribute interpolation and silhouette clipping
may each be approximated in an additional pass. A visual
overview of the algorithm can be found in Fig. 2.

3.1. Assumptions.

We assume a distribution of points sampling an embedded 2-
manifold, where each sample consists of a position, a surface
normal, and a radius. We center a disk of the sample’s radius
at each sample position oriented perpendicular to the sam-
ple’s normal. The radii are collectively large enough such
that a line segment extending from a disk’s center to any
point on its boundary intersects a neighboring disk. We call
such a distribution of disks an occluding disk sampling and
the rendering of such a sampling appears in Fig. 1(b).

While such a disk sampling provides the desirable percep-
tual cue of occlusion, it also yields the distraction of extrane-

c© The Eurographics Association 2005.



J. Talton, N. Carr, & J. Hart / Voronoi Rasterization

(a) (b) (c) (d)

Figure 2: A sparsely sampled surface (a). An occluding disk sampling splatted onto the surface (b). The depth buffer values
generated by this splatting in green, surrounded by a blue region in which fragments are considered in our algorithm (c). The
result of the algorithm, with regions where the algorithm makes an “incorrect" assignment on a silhouette shaded in grey (d).

ous flaps in the outer regions of each disk, beyond the over-
lap. Classical splatting algorithms typically deal with these
regions by performing a Gaussian weighted alpha blending,
but this technique is wholly unsuited for flat-shaded repre-
sentations and can result in blurry images on sparse point
distributions. Our goal is to remove these flaps from the ren-
dered geometry entirely, rather than simply blending their
color values. We accomplish this via a two-pass algorithm
that combines elements of surface line drawing with the idea
of storing distance in the z-buffer [WND97, HCK∗99].

3.2. Occluding Disk Samplings

Given a point set, the problem of picking disk radii appropri-
ately so as to generate an occluding sampling is nontrivial.
Our method, however, does not require this sampling to be
tight: a liberal estimate for r produces error only along the
silhouette boundaries of the rendered surface, although there
is some slight performance degradation from overdraw. As
a result, rather than resorting to expensive and complex spa-
tial computations, we allow the user to adjust the disk radius
interactively. When displaying Witkin-Heckbert floater par-
ticles, we find that setting r = 1.3σ is typically sufficient,
where σ is the global repulsion radius of the particle system
[WH94].

3.3. Disk Geometry.

We model each disk geometrically as a square with sides of
length twice the disk radius. A single texture coordinate rep-
resents a distance value, which is set to zero at the disk’s
center and

√
2×radius at each vertex on the square’s bound-

ary. Perspective-correct interpolation thus sets this texture
coordinate to the distance to the disk’s center in each of the
disk’s fragments, and we discard fragments for which this
coordinate is greater than the disk’s radius to achieve per-
pixel accuracy when rendering.

3.4. Voronoi Rasterization.

The first pass of our algorithm renders all front-facing disks
into a z-buffer in the usual fashion and records the z-buffer
in a texture. The second pass runs the rasterized fragments
of each front-facing disk through a shader that:

(A) discards the fragment if its depth is farther than ε = r/2
away from the stored z-buffer depth value, and

(B) replaces the depth of the fragment with the texture coor-
dinate corresponding to its distance from the disk center.

Fragments competing for a single pixel use the z-buffer (B)
to ensure that only the fragment with smallest “depth" (dis-
tance to disk center) is plotted. The initial z-test (A) limits
the competition for a pixel to the neighborhood of visible
overlaps, so that fragments near the center of a front facing
disk far behind the visible surface are not considered for ren-
dering.

Thus, the first pass of Voronoi rasterization uses the z-
buffer as a depth buffer, whereas the second pass uses it as
a distance buffer similarly to previous Voronoi accelerations
that leverage z-buffering hardware [WND97, HCK∗99].

3.5. Attribute Blending

Although we can create flat-shaded occluding representa-
tions in two passes, the resulting images are not particularly
visually pleasing. To allow for smooth shading and textur-
ing, we approximate per-point vector attribute interpolation
by inserting an additional rendering pass between passes one
and two of the previous algorithm.

First, for this intermediate pass, we extend the radius of
each disk to not only overlap the boundary of its neighbor-
ing disks, but to now overlap the center of each of its neigh-
boring disks. We also enable blending and accumulate into a
16-bit floating point texture. We render only the front-facing
disks and use the same epsilon depth test as before.

The intermediate pass utilizes a fragment shader that con-
structs a quasi-Gaussian kernel over each disk i of radius ri

c© The Eurographics Association 2005.



J. Talton, N. Carr, & J. Hart / Voronoi Rasterization

Figure 3: The image-space
interpolated normal attribute
field for a torus.

Figure 4: The fandisk surface rendered with flat splatting (left) and Voronoi ras-
terization without an attribute field (right). Note the visually distracting overlap
present in the left image, and how disks are automatically clipped against each
other in our method.

as:

wi(d) = 3
d2

r2
i
−2

d3

r3
i

+1 (1)

where d is the value of the texture coordinate representing
the distance to the center of disk i. The fragment shader then
scales the disk’s attribute value by the fragment’s weight-
ing function wi(d) and adds the result to the output texture’s
corresponding pixel.

This results in a smoothly blended floating-point screen-
space attribute field over the projection of the surface shown
in Fig. 3. Because these blending functions are not partitions
of unity, this field is not strictly interpolating. It nevertheless
suffices to produce a smooth Phong shaded appearance over
sparse point sets.

3.6. Silhouette Clipping

In two dimensions, Voronoi cells extend until they meet a
neighboring Voronoi cell except for the cells of points on the
convex hull, which extend infinitely outward. The surface
Voronoi cells of our front-facing point samples near the sil-
houette likewise would extend outward infinitely. Our algo-
rithm stunts the growth of Voronoi cells by rasterizing disks
whose radius is larger than half the diameter of the largest
Voronoi cell, which results in the scalloped appearance of
arc-shaped flaps extending around the silhouette (Fig. 4).

In some instances, we can clip these scallops with the sil-
houette of the shape we are displaying. When displaying im-
plicit surfaces with Witkin-Heckbert floater particles, we can
utilize a second particle system to adhere to the silhouettes
whose job it is to clip against the floater particles [SH05].
For more general point data, we can employ another render-
ing pass to clip some silhouette particles. In this new pass,
we render all back-facing disks into the z-buffer and store

this buffer in a second texture. In subsequent passes frag-
ments are tested against this texture, and any fragment with
a z-value greater than the stored z-buffer value is discarded.
This process, however, is not highly reliable, and can in-
troduce rendering artifacts that are more visually distracting
than the silhouette artifacts it seeks to prevent.

4. Results and Discussion

We implemented Voronoi rasterization in Wickbert, an open-
source shape modeling library based on particles on sur-
faces [SH05]. As with other multi-pass methods, the perfor-
mance of our algorithm is heavily dependent on the screen-
space resolution of the rendered image. At 1024×768 on an
Athlon 64 3500+ with a GeForce 6 series card, we can render
on the order of 50,000 clipped and smoothly shaded disks at
interactive rates (10 FPS). For most sparse visualizations, the
number of points is much smaller and the algorithm runs in
real time (30+ FPS). These results are not particularly com-
petitive with existing mutli-pass point-based rendering algo-
rithms [SPL04], but this is largely due to the developmental
nature of the Wickbert library and to our desire to emphasize
the simplicity of our implementation. It is worth observing
that there is nothing inherent in the algorithm that would pre-
vent it from being aggressively optimized in the manner of
[BSK04]: a more conservative implementation would likely
yield an order of magnitude performance improvement.

Voronoi rasterization presents two attractive features over
existing techniques for sparse point-based visualizations.
Firstly, it requires no preprocessing whatsoever. Point sets in
which the number, location, or orientation of the points are
changing rapidly present no special challenge to our method
since we avoid any nearest-neighbor or topological queries.
That the computational complexity of the algorithm is lin-
ear in the number of points is an especially attractive feature
for implicit surface visualization, since the floater particles

c© The Eurographics Association 2005.



J. Talton, N. Carr, & J. Hart / Voronoi Rasterization

used to display the surface in the Witkin-Heckbert system
are highly dynamic.

Secondly, Voronoi rasterization is extremely easy to im-
plement. Little complicated mathematics is needed (the bulk
of which occurs in the epsilon test due to the non-linear na-
ture of the z-buffer) and the fragment programs at the heart
of the algorithm require only around twenty lines of CG
code. This simplicity ensures that the technique can be in-
tegrated into existing point-based visualization systems with
little time and effort.

The primary failing of our method occurs at surface sil-
houettes. Although clipping can be performed in certain
cases, silhouette artifacts persist for the majority of surfaces.
This problem, however, is not unique to our algorithm and
becomes less perceptible as the size and density of the point
set increases. Silhouette artifacts simply tend to be more
visible in Voronoi rasterization than in traditional splatting
methods because our technique is specifically intended for
sparse sets of points.

5. Conclusion

In this paper we proposed the use of a two-pass GPU al-
gorithm to generate occluding representations from sparse
point sets. In particular, our algorithm leverages the z-buffer
to generate splatted surfaces with no overlap between neigh-
boring disks. The flat shaded representations generated by
our method are superior to those produced by existing tech-
niques when the sampling is very sparse or is heterogeneous
with sparse regions and real-time display is desired. Our al-
gorithm is also quite simple and easy to implement.

To create smooth visualizations, we add an intermediate
pass in which a screen-space attribute field is composited
over the projection of the point set surface. While the images
produced by this field are of slightly lower quality than those
generated by more complex techniques, our method requires
no explicit nearest-neighbor computations, making it ideal
for point sets with varying attributes or cardinality.

6. Acknowledgments

This research was sponsored in part by the NSF under the
ITR SCI-0113968 and by NVIDIA.

References

[ABCO∗03] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN

S., LEVIN D., T. SILVA C.: Computing and ren-
dering point set surfaces. IEEE TVCG 9, 1 (2003),
3–15.

[BK03] BOTSCH M., KOBBELT L.: High-quality point-
based rendering on modern GPUs. In Proc. Pacific
Graphics (2003), pp. 335–442.

[BSK04] BOTSCH M., SPERNAT M., KOBBELT L.: Phong
splatting. In Proc. Point Based Graphics (2004).

[GP03] GUENNEBAUD G., PAULIN M.: Efficient screen
space appoach for hardware accelerated surfel ren-
dering. In Proc. Vision, Modeling and Visualization
(2003), pp. 1–10.

[HCK∗99] HOFF K., CULVER T., KEYSER J., LIN M.,
MANOCHA D.: Fast computation of generalized
voronoi diagrams using graphics hardware. In Proc.
SIGGRAPH (1999).

[Lev03] LEVIN D.: Mesh-independent surface interpolation.
In Geometric Modelling for Scientific Visualization
(2003), Brunnett G., Hamann B., Muelller K.„ Lin-
sen L., (Eds.), Springer-Verlag.

[LW85] LEVOY M., WHITTED T.: The Use of Points as a
Display Primitive. Tech. Rep. 85-022, UNC, Chapel
Hill, 1985.

[MYC∗01] MORSE B. S., YOO T. S., CHEN D. T., RHEIN-
GANS P., SUBRAMANIAN K. R.: Interpolating
implicit surfaces from scattered surface data using
compactly supported radial basis functions. In Proc.
Shape Modeling Intl. (2001), pp. 89–98.

[PKKG03] PAULY M., KEISER R., KOBBELT L., GROSS M.:
Shape modeling with point-sampled geometry. ACM
TOG 22, 3 (2003), 641–650.

[RL01] RUSINKIEWICZ S., LEVOY M.: Streaming qsplat:
a viewer for networked visualization of large, dense
models. In Proc. I3D (2001), pp. 63–68.

[RPZ02] REN L., PFISTER H., ZWICKER M.: Object space
EWA surface splatting: a hardware accelerated ap-
proach to high quality point rendering. In Proc. Eu-
rographics (2002), pp. 461–470.

[SH05] SU W., HART J.: A programmable particle system
framework for shape modeling. In Proc. Shape Mod-
eling Intl. (2005).

[SPL04] SAINZ M., PAJAROLA R., LARIO R.: Points
reloaded: Point-based rendering revisited. In Proc.
Point Based Graphics (2004), pp. 121–128.

[WH94] WITKIN A., HECKBERT P.: Using particles to sam-
ple and control implicit surfaces. In Proc. SIG-
GRAPH (1994), pp. 269–277.

[WND97] WOO M., NEIDER J., DAVIS T.: OpenGL Program-
ming Guide. Addison Wesley, 1997.

[ZPKG02] ZWICKER M., PAULY M., KNOLL O., GROSS

M.: Pointshop 3d: an interactive system for point-
based surface editing. In Proc. SIGGRAPH (2002),
pp. 322–329.

[ZPvBG01a] ZWICKER M., PFISTER H., VAN BAAR J., GROSS

M.: EWA volume splatting. In Proc. Visualization
(2001), pp. 12–17.

[ZPvBG01b] ZWICKER M., PFISTER H., VAN BAAR J., GROSS

M.: Surface splatting. In Proc. SIGGRAPH (2001),
pp. 371–378.

[ZRB∗04] ZWICKER M., RASANEN J., BOTSCH M., DACHS-
BACHER C., PAULY M.: Perspective accurate splat-
ting. In Proc. Graphics Interface (2004).

c© The Eurographics Association 2005.


