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ABSTRACT
A long-standing difficulty in the development of introduc-
tory courses in computer graphics is balancing the educa-
tional necessity of ensuring mastery of fundamental graph-
ical concepts with the highly desirable goal of exciting and
inspiring students to further study by enabling them to pro-
duce visually interesting programming projects. Recently,
we have developed a modified curriculum predicated on the
extensive integration of the OpenGL Shading Language with
a more traditional pedagogical approach. We utilized this
curriculum in the quarter-long, upper-division introductory
graphics course taught in the Department of Computer Sci-
ence at the University of California, Santa Cruz. Our expe-
rience indicates that making shading an integral part of the
entry-level curriculum inculcates students with a compre-
hensive understanding of the algorithms and mathematical
concepts that underlie modern graphical systems, while si-
multaneously equipping them with the tools necessary to
produce complex projects with state-of-the-art technology.

Categories and Subject Descriptors: K.3.2 [Comput-
ers and Education]: Computer and Information Science Ed-
ucation; I.3.0 [Computer Graphics]: General

General Terms: Design, Languages, Human Factors

Keywords: OpenGL shading language, graphics, pedagogy

1 INTRODUCTION
The problem of developing an introductory course in com-
puter graphics that is both sufficiently broad and deep is
well established in the field of computer science education.
While it is generally agreed that interactive, realtime curric-
ula are more suitable for new graphics students than their
offline, rendering-oriented counterparts [6, 8], determining
which specific material is of maximum import, as well as
the precise manner in which to present this material, remain
subjects of continuing debate [2].
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Existing pedagogical approaches may be broadly catego-
rized as either top-down, in which students use one of many
popular graphics APIs (such as OpenGL) to incrementally
build complex graphical applications [14], or bottom-up, in
which students develop toy implementations of each stage
of the graphics pipeline [12]. In practice, neither of these
methods has proven wholly satisfactory. In the top-down
approach, students are at risk of becoming embroiled in
the technical idiosyncrasies of their chosen API, often to
the marked detriment of their theoretical understanding of
the underlying material. Conversely, in the bottom-up ap-
proach, the sheer number of special cases that must be han-
dled in order to develop a robust and useful implementation
of the graphics pipeline may prevent students from ever pro-
ducing non-trivial graphical systems. Since many students
are drawn to graphics by a desire to emulate the visual ef-
fects they see in video games and movies, this latter outcome
can be especially egregious, particularly given the widely
recognized potential of graphics courses to excite students
and motivate them to further study [8].

Hybrid approaches have been implemented with varying
degrees of success [5], but the fundamental difficulty of en-
suring that students fully understand the algorithms and
mathematical concepts that underlie modern graphical sys-
tems, while simultaneously enabling them to produce visu-
ally interesting projects, remains largely intractable in many
introductory graphics courses. Recent consensus in the ed-
ucational graphics community has advocated the removal
of raster-level algorithms from introductory curricula, while
also acknowledging that students wishing to enter the graph-
ics industry or pursue graduate study in the field may be
significantly disadvantaged by this approach [2]. In most
semester- or quarter-long courses, however, there is simply
not enough time for students with no previous graphical ex-
perience to implement low-level algorithms such as clipping
or rasterization and also produce a complex, API-driven
project.

Another significant hurdle that must be overcome anew
with each successive course offering is that the rate of tech-
nological progress in the field of graphics far outstrips that
of other, more firmly established areas. For roughly the
past ten years, graphics hardware has improved at a rate
nearly three times faster than Moore’s Law predicts, effec-
tively doubling in processing power every six months [9]. As
a consequence of this fact, the advanced material presented
in a semester-long graphics course may, in theory, become
obsolete between the time it is placed on the syllabus and
the time it is presented in class. Clearly every effort should



be made to keep courses as relevant and up-to-date as pos-
sible, but this is a considerable challenge in graphics classes
given the rapid pace of technological advancement.

Recently, in an effort to combat these problems in the
Department of Computer Science at the University of Cal-
ifornia, Santa Cruz, we have developed a modified curricu-
lum predicated on the extensive integration of the OpenGL
Shading Language with a more traditional top-down peda-
gogical approach. We utilized this curriculum in the quarter-
long, introductory graphics class offered by the department:
an upper-division course primarily intended for upperclass-
men and first-year graduate students with no previous graph-
ical exposure. Our experiences indicate that making shad-
ing an integral part of the entry-level curriculum engen-
ders a wide variety of educational benefits. In particular,
we believe that teaching shaders bridges the gap between
top-down and bottom-up approaches by exposing the most
relevant low-level technical details of the graphics pipeline
in a manner that directly contributes to the production of
complex, high-level software. We submit that students who
learn the OpenGL Shading Language as part of their in-
troduction to computer graphics necessarily gain a better
grasp of the mathematical underpinnings of modern graph-
ical algorithms and are more likely to produce visually and
technologically impressive course projects than those who
are taught to use only the fixed-function OpenGL API.

2 OPENGL SHADING LANGUAGE
The OpenGL Shading Language (GLSL) is a high-level pro-
cedural programming language that allows application pro-
grammers to control the graphics units that are used to pro-
cess vertex and fragment data in the OpenGL pipeline. The
language was created by the OpenGL Architecture Review
Board and is part of the OpenGL 2.0 standard. GLSL has
been supported (to varying degrees) on virtually all con-
sumer graphics hardware produced since 2002.

Since GLSL is based on C and C++ syntax and flow con-
trol, it is extremely accessible to students already familiar
with either language. In addition, the seminal reference text
on the subject [11] contains a near-complete technical spec-
ification as well as thousands of lines of example code, mak-
ing it virtually ideal for the classroom setting. One par-
ticularly attractive feature of GLSL is that it is very simi-
lar to the other popular shading languages used in graph-
ics, such as NVIDIA’s Cg, Microsoft’s High Level Shading
Language (HLSL), and even the production-oriented Ren-
derMan Shading Language (RSL). As a result, a working
knowledge of shaders in OpenGL translates directly to many
other platforms and contexts.

Traditionally, educational use of GLSL has been relegated
to advanced courses on realtime rendering, despite the fact
that shaders are ubiquitous in modern graphical applica-
tions. Non-realtime rendering has relied exclusively on sha-
ders to describe lighting and material properties for years,
and virtually all modern interactive graphical software uses
the programmable pipeline in some manner. In fact, the
vertex and pixel stages of most current-generation graphics
hardware are entirely programmable, and rely on a set of
default shaders to emulate the fixed-function pipeline when
necessary.

varying vec3 N;

void main()
{

gl Position = gl ProjectionMatrix *
gl ModelViewMatrix * gl Vertex;

N = gl ModelViewMatrixInverseTranspose * gl Normal;
N = normalize(N);

}

Figure 1. A simple GLSL vertex shader.

3 EDUCATIONAL BENEFITS
Teaching shading in an introductory setting has many ben-
efits over the traditional approach of focusing exclusively
on the fixed-function OpenGL API. Perhaps the most com-
pelling argument for teaching GLSL is that writing shaders
forces students to understand the mathematical transforma-
tions that lie at the root of the graphics pipeline. This is
because the OpenGL Shading Language shifts the responsi-
bility of applying transformations from the application pro-
gramming interface to the application programmer. In Fig-
ure 1, a simple GLSL vertex shader—roughly the OpenGL
Shading Language equivalent of “Hello World”—is shown.
The shader transforms a vertex position from object-space
to clip-space and computes the associated eye-space vertex
normal: two tasks that are traditionally handled transpar-
ently by the OpenGL API. In order for a student to write
this shader, he or she must explicitly understand the object-
space, eye-space, and clip-space coordinate systems, as well
as the non-commutativity of matrix multiplication, and the
inverse transpose transformation for normal vectors. Since
GLSL syntax is extremely straightforward, students have
a direct connection with the mathematical equations gov-
erning their applications, and the precise behavior of each
stage of the pipeline is no longer obscured by esoteric com-
binations of API settings and options.

This unmasking is even more profound in more compli-
cated algorithms. Figure 2 shows the C++ code necessary
(after texture setup) to perform cubic environment mapping
using the fixed-function OpenGL API. While this code seg-
ment seems to indicate that some feature involving a combi-
nation of textures, cubes, and cartography has been enabled,
it fails to provide any insight at all as to what cube mapping
is or how it works. In stark comparison, the equivalent GLSL
code, which is displayed in Figure 3, is quite elucidating.
A student writing this shader must calculate the reflected
eye vector, perform the corresponding texture lookup, and
set the output color of the fragment. This example, while
somewhat contrived, illustrates one of the fundamental ad-
vantages of teaching GLSL: shaders expose functionality the
traditional API obscures.

Two other areas in which GLSL affords students virtu-
ally unparalleled opportunities for learning are lighting and

glEnable(GL TEXTURE CUBE MAP);

Figure 2. Cube Mapping using the fixed-function OpenGL API.



varying vec3 N;
varying vec3 E;

uniform samplerCube envMap;

void main()
{

vec3 R = 2 * dot(N, E) * N - E;
vec3 color = vec3(textureCube(envMap, R));
gl FragColor = vec4(color, 1.0);

}

Figure 3. Cube Mapping in a GLSL fragment shader.

shading. The fixed-function OpenGL pipeline has no sup-
port for per-pixel shading (instead relying on the antiquated
and tessellation-dependent Gouraud method) and provides
only a single lighting model (Blinn-Phong). Using the Open-
GL Shading Language, however, students can use fragment
shaders to directly implement arbitrarily complex lighting
models and see firsthand the effect of changing shading pa-
rameters: a process that has been largely impossible in tra-
ditional top-down realtime curricula. This enhanced func-
tionality not only allows students to easily produce more re-
alistic three-dimensional applications than ever before, but
also gives them an intuitive, practical understanding of the
basic quantities and relationships involved in light transport.
In addition, teaching GLSL largely eliminates the need to
spend instructional time covering unwieldy and outdated al-
gorithms such as texture shading.

Another benefit of teaching GLSL is that shader pro-
gramming represents a relatively unique kind of comput-
ing. While most computer science education focuses on se-
quential programming languages and techniques, as silicon
fabrication processes edge closer and closer to fundamental
physical limits, modern microprocessor architectures are be-
coming more and more parallelized. For many students, pro-
gramming graphics hardware may be their first experience
with stream processing. By incorporating render-to-texture
and multipass methods into the curriculum, students can
begin to consider parallel algorithms as a natural extension
of more familiar techniques.

4 CURRICULUM
Our curriculum loosely follows the general structure of [1].
We prefer this text for several reasons. First, it presents a
top-down, OpenGL-based approach to introductory graph-
ics, yet still provides a competent treatment of low-level al-
gorithms like rasterization. Second, it has sufficient scope to
ensure that most topics we discuss in class are also covered
in the text. Third, its presentation is highly mathematical
in nature, and excellent, detailed derivations are provided
where appropriate. Lastly, it is one of the few introductory
graphics textbooks that has adequate coverage of basic pro-
grammable shaders.1 We supplement our primary text with
additional readings from [13, 11].

1It should be noted, however, that the first printing of the fourth
edition contains several conspicuous errors in the chapter on pro-
grammable shading. Students should be made aware of this prob-
lem early on and directed to the author’s errata on the web.

Somewhat surprisingly, integrating GLSL into an existing
top-down curriculum is not a monumentally difficult task.
We spend only two full lectures explicitly covering the pro-
grammable pipeline: the first towards the beginning of the
quarter, focusing on the OpenGL Shading Language syn-
tax and setup, and the second in the final weeks of the
class, discussing advanced rendering techniques and algo-
rithms. We supplement other lecture topics with discus-
sion of shader-level implementation concepts, but this usu-
ally consists of little more than ensuring that we give com-
plete and correct mathematical descriptions of the relevant
graphical phenomena.

It is important to understand that we find there to be
little value in teaching GLSL for its own sake in an intro-
ductory graphics setting. Rather, we explore a broad and
diverse curriculum and use the OpenGL shading language
as a tool to extend and enhance student understanding. In-
deed, many traditional graphics topics besides transforma-
tions and lighting can benefit from judicious application of
the programmable pipeline. Vertex shaders, for instance,
provide a natural platform upon which to implement effi-
cient, physically-based particle simulations. Image process-
ing algorithms, when firmly rooted in the theoretical founda-
tions of separable convolutions, lend themselves directly to
multi-pass render-to-texture approaches. Simple raytracing
can even be performed in a fragment shader to approximate
refractive effects and compute visibility for shadowing.

In a quarter-long course, we have time for only three sub-
stantial programming assignments. The first is a short as-
signment that focuses on geometry processing and does not
use the programmable pipeline. The second introduces stu-
dents to GLSL, and requires them to implement a variety
of vertex and fragment shaders. The final project for the
course is open-ended and intended to represent one of the
most significant undertakings of the students’ college ca-
reers. To give students a starting point for their assign-
ments, we provide complete source code for a simple two-
dimensional single-polygon animation in both fixed-function
and GLSL form.

One particularly nice feature of the OpenGL Shading Lan-
guage is that shader files are compiled dynamically at run-
time. In a semester-long course, we would introduce another
kind of introductory GLSL assignment. Students would be
provided with a pre-built application executable and a de-
tailed interface specification, and subsequently be required
to write only the GLSL shaders without having to worry
about setup code at first. This strategy is similar to the
approach described in [3], but requires no intermediary soft-
ware layer to be introduced between shaders and
application.

5 TECHNOLOGICAL CONSIDERATIONS
Although the OpenGL Shading Language is part of the
OpenGL 2.0 standard, some standards appear to be more
standard than others. Due to Microsoft’s desire to pro-
mote its Direct3D API, OpenGL support in Windows is
severely lacking. Currently available versions of Microsoft’s
operating systems provide native support only for OpenGL
1.1.2 As a result, Windows applications that utilize mod-

2With the upcoming release of Windows Vista, Microsoft will
be advancing boldly to the year 2002 with “native” support for
OpenGL 1.4 through a Direct3D emulation layer.
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Figure 4. Screenshots of some of the final course projects that made use of GLSL. From left to right: chromatic aberration on a camel (a),
a space shooter with per-pixel lighting and particle effects (b), complex illumination from dynamically-filtered environment maps (c), dynamic
shadows using realtime raytracing in a fragment shader (d).

ern OpenGL features must dynamically locate the necessary
function pointers by querying the installed vendor-supplied
graphics drivers. Linux support for GLSL is equally prob-
lematic and vendor dependent, and the OpenGL Extension
Wrangler Library [7] is a virtual necessity for making the
experience bearable on either platform.

Macintosh OS X, in stark contrast, has had native GLSL
support since version 10.4.3. This fact, combined with the
wide range of open-source and Apple-provided development
tools, makes it a more natural choice for the development
platform in a GLSL-based course.

One final technological consideration is that older graphics
cards may not fully support all OpenGL Shading Language
features. In particular, less recent hardware may lack true
branching functionality and thus incur substantial perfor-
mance penalties during the evaluation of loops and condi-
tional expressions. Similarly, some very old graphics cards
may have prohibitive restrictions on the maximum num-
ber of instructions a single shader may contain, causing the
driver to fall back to software emulation mode for complex
shader programs. Nevertheless, these limitations are largely
tolerable in an educational setting, and institutions with ac-
cess to hardware from the NVIDIA FX or ATI 9700 series
or later are unlikely to encounter significant problems.

6 STUDENT REACTION
With a class of only 24 students, any serious attempt at sta-
tistical analysis of student response to our curriculum would
be sorely misguided. Likewise, we recognize that graphics
courses are naturally predisposed to glowing student reviews
irrespective of their actual merit. Nonetheless, we do believe
that the anecdotal evidence offered by our students’ anony-
mous course evaluations has some instructive value.

Overall, students were extremely enthusiastic about the
course material. As Table 1 indicates, 84% of the class

Poor Fair Satisfactory Very Good Excellent
0% 0% 16% 26% 58%

Table 1. Students’ rating of the quality of the course’s assignments.

Strongly
Disagree Neutral Agree

Strongly
Disagree Agree

0% 0% 0% 25% 70%

Table 2. Students’ response to the statement “I put considerable
effort into this course.”

rated the quality of the course assignments as “Very Good”
or “Excellent”. In addition, in their evaluations, students
described the class as:

“By far the best class I’ve taken. Anywhere.”

“One of the greatest learning experiences ever.”

“The best class that I have taken in my four years
at UCSC.”

Not all of the feedback was positive, however, suggesting
that there is still room for improvement in our approach.
In particular, some students were frustrated with the Mac-
intosh as a development platform, as well as the relative
sensitivity of the GLSL setup code. One student opined:

“The hardest part of [the second programming
assignment] was setting up the environment.”

One measure of student engagement is the effort that
students expended in the course. Table 2 illustrates that
most students rated their level of exertion as considerable.
Quantitatively, 42% of students indicated that they spent
18 hours or more per week outside of class studying and
completing course assignments. Students characterized their
work habits as follows:

“I put more effort into this course than I ever
do.”

“We covered material that actually matters, so
it was worth learning.”

Students were allowed to design their own final course
projects, with the sole restriction that the end result had
to be sufficiently visually interesting. We provided a long
and varied list of project suggestions, and students were
explicitly not required to pick topics associated with pro-
grammable shading. Nonetheless, 16 of the 23 students who
turned in a project picked a topic that made substantial
use of the OpenGL Shading Language. A small gallery of
some of the more impressive GLSL projects can be seen in
Figure 4.



7 CONCLUSIONS AND FUTURE WORK
In this paper we have described a method for integrating the
OpenGL Shading Language into the introductory graphics
curriculum. While further refinement of our approach is cer-
tainly warranted, we strongly feel that the underlying strat-
egy was a success. Using GLSL as a major component of
introductory courses in computer graphics provides students
with cutting-edge tools with which to create exciting graph-
ical applications and greatly enhances their understanding
of fundamental course topics and algorithms. Furthermore,
as graphics hardware continues its exponential technologi-
cal advancement, we believe that programmable shaders will
play an increasingly pronounced role in realtime applica-
tions, and that students who have no prior experience with
shading will be at a significant disadvantage.

One area that appears particularly ripe for future inclu-
sion in our curriculum is general purpose computing on
graphics processors (GPGPU). Once students have mas-
tered the use of programmable hardware for transforma-
tions and shading, it is relatively straightforward to demon-
strate the utility of graphical architectures for solving non-
graphical problems, especially given the recent advent of
GPGPU systems [4] and metaprogramming environments
[10]. Due to the prodigious processing power and ubiquity
of modern graphics hardware, a brief introduction to the
field of GPGPU could be of enormous benefit even to stu-
dents whose eventual computational careers are far removed
from the realm of graphics and visualization.

8 WEB RESOURCES
Our course webpage is archived online at:

http://www.soe.ucsc.edu/classes/cmps160/Spring06/

The course syllabus, lecture notes, assignments, and dis-
tributed sample code are all available for download.
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